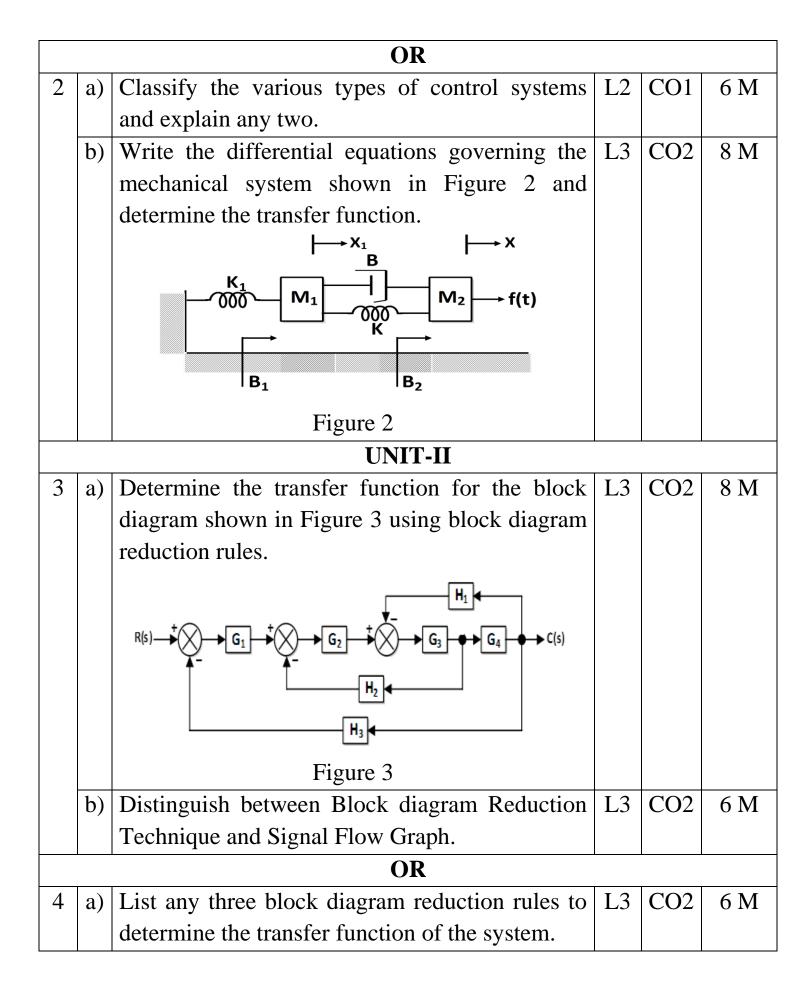
III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

CONTROL SYSTEMS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.


BL – Blooms Level

)

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	List the basic elements of mechanical translational systems? Write its force balance equation.	L2	CO1	6 M			
	b)	Determine the transfer function of the given electrical network as shown in Figure 1.	L4	CO4	8 M			
		T W T To VI JAAN T TO VI JAAN T TO						
		Figure 1						

PVP 20

Max. Marks: 70

	1-)	Delana en en en este de la transfer for tier	12	COD	0 1
	b)	Deduce an expression for the transfer function	L3	CO2	8 M
		of an armature controlled DC servo motor.			
		UNIT-III			
5	a)	Deduce the expressions for the following time	L3	CO3	8 M
		domain specifications for unit step input.			
		i. Peak time			
		ii. Settling time for 5% tolerance			
	b)	Determine the angle of asymptotes and the	L3	CO3	6 M
		centroid for the following transfer function:			
		$G(s)H(s) = \frac{K}{(s+1)(s+2+j2)(s+2-j2)}$.			
		OR	<u> </u>		
6	a)	Derive the step response of first order system	L3	CO3	6 M
		and plot its response.			
	b)	Consider the characteristic equation of a closed	L4	CO4	8 M
		loop control system is represented by the			
		following equation:			
		$S^4 + 25S^3 + 15S^2 + 20S + K = 0$			
		Apply the Routh Hurwitz criterion to determine			
		the following:			
		i. Range of values of 'K' for the system to be			
		stable.			
		ii. Frequency of sustained oscillations.			
		UNIT-IV			
7	Sk	etch the Bode plot for the system having	L4	CO4	14 M
	fol	lowing transfer function to determine the phase			
	ma	argin and gain margin.			
		50			
		$G(s)H(s) = \frac{SS}{S(1+S)(1+0.5S)}$			
	1	Page 3 of 4	<u>I</u>		

		OR							
8	a)	Illustrate the advantages and limitations of	L3	CO3	6 M				
		frequency response methods.							
	b)	Describe the significance of the phase crossover	L3	CO3	8 M				
		frequency and gain crossover frequency in							
		determining the stability of a system.							
	UNIT-V								
9	a)	Point out any four properties of state transition matrix.	L4	CO5	4 M				
	b)	Determine the controllability and observability	L4	CO5	10 M				
		of a control system which is represented by the							
		state space model given below:							
		$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$							
		$\mathbf{Y} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$							
		OR							
10	a)	L L	L4	CO5	7 M				
		following transfer function:							
		$\frac{Y(S)}{Y(S)} = \frac{1}{Y(S)}$							
		$\frac{1}{U(S)} = \frac{1}{S^2 + S + 1}$							
	b)		L2	CO1	7 M				
		space and state vector. What are the advantages							
		of state space analysis?							